VOL. 41 1747—1756 (1968) BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN

Phase Transitions and Thermodynamic Properties of Rubidium and Cesium Cyanides*1

Masayasu Sugisaki, Takasuke Matsuo, Hiroshi Suga and Syûzô Seki

Department of Chemistry, Faculty of Science, Osaka University, Toyonaka, Osaka (Received December 21, 1967)

Heat-capacity measurements were performed for rubidium and cesium cyanide crystals between 15 and 300°K. It is found that each crystal has only one anomalous peak in its heat capacity curve, being located at 110.3°K and 193.1°K for rubidium and cesium cyanides, respectively. By the comparison of the present data with those for potassium and sodium cyanides, it was shown that these anomalous heat capacities can be interpreted in terms of the orientational ordering processes of cyanide ions in the crystals. was suggested that there should exist the residual entropy due to the frozen-in state in their orientational configuration and they were estimated as $R \ln 4$ for rubidium cyanide and $R \ln 2$ for cesium cyanide.

In the two previous papers,1,2) we have reported the results of our investigation on potassium and sodium cyanide crystals. each salt we have found two kinds of phase transition which were interpreted as the orientational order-disorder phenomenon with respect to the distinction of carbon and nitrogen atoms in cyanide ion as well as to the random orientation of the carbon to nitrogen As a series of our study concerning the orientational motion of cyanide ion, we have studied the phase transition phenomenon of rubidium and cesium cyanides with paying special attention to the effect of the difference of their size of cation on the orientational motion of cyanide ion.

According to the X-ray analysis by Lely, 3) rubidium cyanide is of NaCl-type, while cesium cyanide is reported to have CsCl-type at room temperature. This is in contrast to the fact that both potassium and sodium salts have the same NaCl-type.

Thus, it seems interesting to study the effect of the difference of size of cation in rubidium salt and further of the difference in crystal structure for cesium cyanide on an appearance of phase transition.

We have measured heat capacity of these *1 Read before the 17th and the 18th Annual salts between 13 and 300°K and found only one anomalous peak of the heat capacity in each salt. This remarkable difference in the behavior of the temperature dependence of their heat capacities was attempted to interpret in connection with the thermal motion and ordering process of cyanide ion in the crystalline field.

Experimental

Samples. a) Rubidium Cyanide. 4) Commercial rubidium hydroxide (Nakarai Chemicals Co., Ltd.) was dissolved in the absolute ethyl alcohol and the insoluble substances supposed to be mainly of rubidium carbonate were removed by filtration. Liquid hydrogen cyanide was then poured slowly to the phase separated solution which consisted with liquid benzene over the ethanol solutions mentioned above. Rubidium cyanide crystal was first produced at the interfacial layer and then it was deposited to the bottom of the container with a solution of absolute methyl alcohol and absolute diethylether. After the product was filtrated, the sample was recrystallized twice from the solution of water and methyl alcohol. The final product thus obtained was dried in vacuo (about 10-3 mmHg) carefully for several hours at 120°C to remove the solvents completely.

b) Cesium Cyanide. The crystal was prepared by the same method as mentioned above. The cesium hydroxide used for preparation is the product of Nakarai Chemicals Co. Ltd.

By a spectroscopic analysis, all the impurity contents of carbonate ion were confirmed to be le-s than 0.1 mole percent, and the traces of metallic ions (Na+, K+, Si2+, Mg2+, and Ca2+) were also

Meetings of the Chemical Society of Japan at Tokyo

⁽¹⁹⁶⁴⁾ and at Osaka (1965).

1) H. Suga, T. Matsuo and S. Seki, This Bulletin, 38, 1115 (1965).

2) T. Matsuo, H. Suga and S. Seki, ibid., 41, 583

^{(1968).}

³⁾ J. A. Lely, 1942, Dissertation, Utrecht, pp. 84.

⁴⁾ J. Meyer, Z. anorg. Chem., 115, 207 (1921).

Heat-Capacity Measurement. Measurements of heat capacities were made on the sample of 0.2899 mol of rubidium cyanide and 0.2357 mol of cesium cyanide, sealed in a gold calorimeter cell (18 K) with a small amount of helium gas. The low-temperature adiabatic type calorimeter, the details of which were described in the previous paper, 9 was used between 15°K and 300°K.

The reported values are based on a formula weight of 111.49 for rubidium cyanide and 158.92 for cesium cyanide, and also on the basic relations O°C=273.15°K and 1 cal=4.1840 abs. joules. Temperature measurements were carried out with platinum resistance thermometer calibrated in terms of the International Temperature Scale between 90 and 500°K and the provisional scale of the National Bureau of Standards between 11 and 90°K.

Experimental Results Heat Capacities. The heat capacities ob-

tained from 15 to 300°K are listed in Table 1 for rubidium cyanide and in Table 2 for cesium cyanide. The heat-capacity curves are given in Figs. 1 and 2 for rubidium and cesium cyanides, each of which shows only one phase transition, respectively.

Thermodynamic Properties. Thermal data on phase transition are listed in Table 3 and the thermodynamic functions are given in Table 4 for rubidium cyanide and Table 5 for cesium cyanide. The values below 15°K are obtained by extrapolation on the assumption of the Debye T^3 -law. As is shown in the previous paper, 5) the error in the values of the heat capacity is within $\pm 0.3\%$ above liquid nitrogen and $\pm 1\%$ in liquid hydrogen temperature regions, respectively.

TABLE 1. HEAT CAPACITIES OF RUBIDIUM CYANIDE

$T_{\mathbf{s}^{\mathbf{v}}}$.	Approx. ⊿T	$\Delta H/\Delta T$ cal/(mol degK)	$^{T_{ m a.v.}}_{ m K}$	Approx.	$\Delta H/\Delta T$ cal/(mol degK)	
	Series 1		39, 81	2, 280	7, 307	
80.83	1.912	13,534	42, 03	2.143	7.718	
82,72	1,882	13.781	44, 11	2,029	8, 120	
84, 59	1,855	14.001	46, 25	2, 257	8, 485	
86, 43	1,829	14, 237	48, 45	2, 151	8, 853	
88.25	1.805	14, 460	50, 55	2.058	9, 222	
90.05	1.784	14.657	52, 75	2, 338	9, 598	
91.82	1.761	14.896	55.04	2, 248	9,974	
93, 57	1.741	15. 109	57. 25	1.085	10, 340	
95, 30	1,721	15. 3 4 0	59, 39	2, 101	10, 686	
97.01	1.699	15.640	61.46	2.042	11, 031	
98, 70	1,677	15.890		Series 3		
100, 36	1.652	16, 253	14, 90	1,871	1, 529 [,]	
102.00	1,622	16.734	14. 90 16. 66	1,500		
103, 60	1,577	17. 581			1,881	
105.14	1.500	19,098	18.06	1.282	2.176	
106.57	1,361	22. 487	19.57	1,653	2.491	
107, 86	1, 229	26, 428	21, 13	1.435	2.849	
109,00	1,037	34.072		Series 4		
109.93	0,825	46, 655	62, 10	2, 213	11.154	
110.79	0.909	40, 897	64, 26	2, 100	11.459	
111.84	1, 175	28, 151	66.34	2, 050	11.732	
113.18	1.504	18. 584	68.36	2.006	11.985	
114.74	1,619	16. 113	70.35	1.965	12. 243.	
116, 36	1,616	16.068	72.30	1.929	12.471	
117.97	1,614	16, 052	74.21	1.895	12.708	
119, 59	1.611	16,020	76. 0 9	1.862	12.950°	
121.19	1,607	16, 031	78.03	1.833	13, 153	
	Series 2		79.75	1.804	13.398	
22,09	2, 510	3, 059		Series 5		
24.41	2.098	3, 630	120.84	1.750	16, 107	
26, 66	2. 364	4, 204	122, 58	1.744	16, 073	
28.89	2.077	4. 765	124.33	1.748	16.064	
31.05	2. 215	5. 321	126,07	1.738	16.082	
33, 31	2.284	5, 873	127.81	1.735	16.085	
35.50	2.090	6. 405	129.54	1, 731	16.072	
37.61	2, 109	6. 882	131. 27	1.727	16, 075	

⁵⁾ H. Suga and S. Seki, This Bulletin, 38, 1000 (1965).

(Table 1 continued)

$T_{f s.v.}$	$ \begin{array}{c} Approx. \\ \mathcal{\Delta} T \end{array} $	$\Delta H/\Delta T$ cal/(mol degK)	Tav.	Approx.	$\Delta H/\Delta T$ cal/(mol degK)
133.00	1.722	16.082	216, 44	2. 252	16. 087
134, 72	1.719	16.075	218, 69	2. 250	16.079
136. 54	1.929	16.066	220, 94	2. 249	16, 062
138.49	1.926	16, 058	223.18	2, 247	16.058
140.39	1.921	16, 081	225. 42	2. 245	16.047
142. 31	1, 917	16.070	227, 66	2, 243	16. 059
144, 23	1.925	16.083	229, 89	2. 237	16. 110
146. 15	1.910	16.092	232, 12	2. 233	16, 127
148.08	1.907	16, 088	234. 35	2. 231	16, 107
149.96	1.904	16.078	236. 57	2, 228	16. 124
151.86	1.904	16, 042		_,	10, 122
157.73	1.901	16, 054		Series 7	
			238.44	2, 223	16.048
	Series 6		240, 65	2. 217	16, 115
155. 64	1.928	16. 113	242.86	2.212	16. 144
157. 56	1. 933	16. 067	245.07	2.209	16, 150
159. 48	1.918	16, 12 4	247. 27	2, 205	16, 174
161. 4 0	1.916	16. 112	249. 47	2. 206	16. 117
163. 31	1.911	16. 122	251, 67	2, 204	16. 124
165. 22	1, 909	16. 116	253, 87	2, 202	16. 115
167.13	1,906	16. 111	256. 07	2. 200	16. 111
169.04	1.905	16.094	258. 27	2, 197	16, 132
170. 94	1.903	16, 082	260, 46	2. 195	16. 132
172.83	1.901	16, 079	262, 65	2. 192	16. 146
174.74	1.898	16.099	264, 84	2. 190	16. 151
176.64	1.897	16.090	267. 04	2, 186	16, 152
178. 55	1,930	16.093	269. 21	2. 184	16, 156
180. 48	1.928	16. 087	271.40	2, 178	16, 215
182.41	1.926	16.098	237.57	2.177	16. 191
184. 33	1.926	16.084	275.75	2, 178	16. 146
186. 26	1.924	16.076	210.10		10.140
188, 18	1.921	16. 104		Series 8	
190. 10	1.922	16.068	277.61	2.623	16. 146
192, 03	1.921	16.062	280. 22	2.617	16. 180
193. 92	2.175	16. 122	282, 83	2, 613	16, 193
196.08	2, 278	16.050	285.44	2.610	16, 189
198. 35	2. 276	16. 035	288, 04	2, 605	16. 210
200.62	2. 271	16.060	290.64	2.600	16. 226
202, 89	2. 266	16. 093	293, 24	2. 598	16. 206
205, 16	2, 264	16, 089	295. 82	2. 592	16, 252
207. 42	2, 263	16, 056	298. 41	2. 589	16. 243
209, 68	2. 259	16.079	300. 98	2, 581	16, 298
211, 94	2. 257	16.077	303, 55	2. 581	16. 253
214. 19	2. 254	16.084	000.00		20.200

TABLE 2. HEAT CAPACITIES OF CESIUM CYANIDE

$T_{f s.v.}$ °K	Approx.	ΔH/ΔT cal/(mol degK)	Tay.	Approx. Δ T	ΔΗ/ΔΤ cal/(mol degK)
15. 16 17. 09 18. 73 20. 42	Series 1 2.0484 1.7586 1.4853 1.8802	1. 473 1. 928 2. 235 2. 650	21. 07 22. 73 24. 19 26. 90 28. 72 30. 50	1.7785 1.5521 1.3927 1.9134 1.7335 1.8392	2. 792 3. 177 3. 525 4. 095 4. 497 4. 926
22. 18 14. 20 16. 23 18. 02 19. 50	1. 6196 Series 2 2. 0124 1. 9808 1. 5974 1. 3684	3. 062 1. 213 1. 699 2. 103 2. 434	32. 24 33. 85 35. 37 36. 81 38. 29 39. 80	1. 6986 1. 5915 1. 4969 1. 4165 1. 5535 1. 4837	5. 306 5. 637 5. 977 6. 313 6. 572 6. 834

(Table 2 continued)

[Vol. 41, No. 8

		(Table <u>¥</u> 2 ∈	continued)		
$T_{\overset{\mathbf{a}}{\circ}\overset{\mathbf{V}}{\mathbf{K}}}.$	Approx.	$\Delta H/\Delta T$ cal/(mol degK)	$T_{f av}$.	Approx.	ΔH/ΔT eal/(mol degK)
41.24	1.4179	7. 131	146. 25	2, 1811	16.949
42.61	1. 3530	7. 520	148. 42	2. 1691	17. 066
43. 92	1.3060	7.785	150, 58	2. 1552	17.215
45. 25	1.3808	8. 022	152. 72	2. 1398	17. 392
46.60	1. 3391	8. 253	154. 84	2, 1209	17.623
48. 10	1.7014	8. 493	156. 95	2. 1050	17. 821
49. 76	1.6447	8.769	200.00		21,7002
51.37	1.5939	9.044		Series 5	
53.06	1. 8182	9. 323	159. 10	2, 2396	18.007
54, 85	1.7711	9. 526	161.33	2.2207	18. 237
56. 58	1,7234	9. 781	163.54	2, 1997	18. 503
58. 26	1,6789	10.040	165. 73	2. 1786	18. 765
59. 91	1.6406	10. 259	167.89	2, 1591	19.044
05.01		20.200	170.04	2. 1363	19. 359
	Series 3		172. 16	2. 1120	19.711
60.02	1.8373	10. 263	174. 26	2.0851	20. 122
61.84	1.7944	10. 493	176.23	2, 0590	20. 522
63.61	1.7534	10.744	178.37	2.0296	20.997
65. 35	1.7164	10.991	180.39	1.9961	21.564
67.15	1.8954	11. 198	182.37	1,9640	22.142
69.03	1.8612	11, 394	184.30	1,9224	22.892
70.87	1.8279	11. 597	186. 19	1.8681	23, 952
72.76	1.9691	11.758	188.03	1.8066	25. 237
74 . 71	1.9392	11.919	189.79	1.7035	27.626
76.63	1.9045	12. 152	191.28	1.2847	38. 347
7 8. 51	1.8751	12. 345	192.18	0.5290	121.366
80. 38	1.9606	12.467	192.57	0.2516	271.700
82.33	1.9297	12.665	192.78	0.1924	359.788
84. 24	1.9027	12.840	193.39	1.0437	54.074
86.13	1.8770	13.024	195.08	2.3388	16.045
87.99	1.8543	13. 196	197.32	2. 3397	16.038
89.83	1.8369	13. 307	199.76	2. 3391	15. 869
91.66	1.8175	13. 458	202.10	2. 3401	15. 924
93.47	1.8007	13. 590	204.44	2.3421	15.773
95. 26	1.7857	13.703	206.78	2. 3397	15.881
97.11	1.9280	13. 827	209. 12	2.3408	15. 833
99.03	1.9120	13.959	211.46	2.3403	15. 808
100.90	1.8982	14.053	213.80	2.3401	15.784
102.81	1.8849	14. 144	216.43	2.3414	15.799
104.68	1.8693	14. 275	218.78	2, 3472	15, 761
106. 44	1.8556	14. 370		Samian 6	
108.38	1.8456	14. 432		Series 6	
110.21	1.8325	14.548	216. 10	2. 3484	15.719
112.03	1.8202	14.666	218.44	2.3429	15. 728
113.83	1.8060	14.818	220.78	2. 3382	15. 737
115.62	1.7947	14. 928	223. 12	2. 3356	15. 729
	Series 4		225. 45	2. 3339	15. 720
115 51		14 011	227.79	2. 3319	15. 732
115.71	1.7931	14.911	230. 11	2.3297	15.713
117.70	2. 1834	15.048	232. 44	2. 3265	15.726
119.87	2.1658	15. 198	234.77	2. 3231	15. 744
122.03	2. 1514	15.319	237.09	2. 3219	15.732
124. 17	2. 1351	15. 469	239. 41	2. 3200	15.727
126.30	2.1185	15.626	241.73	2. 3207	15. 687
128. 41	2. 1038	15.762	244.05	2. 3195	15.672
130. 61	2. 2949	15. 844	246. 36	2.3167	15.678
132.89	2. 2760	16.020	248.67	2. 3129	15. 716
135. 16	2. 2588	16. 181		Series 7	
137.41	2. 2426	16. 335	05. 0.		1 = 200
139.64	2. 2282	16. 475	251.01	2.4101	15.698
141.86	2. 2161	16. 581	253. 42	2.4072	15. 706
144.06	2. 1981	16.765	255.82	2.4036	15.718

(Table 2 continued)

$T_{\mathrm{av.}}$	Approx. \$\Delta T\$	$\Delta H/\Delta T$ cal/(mol degK)	${}^{T_{\mathbf{a}}}_{\mathbf{K}}$.	Approx,	$\Delta H/\Delta T$ cal/(mol degK)
258. 23	2. 4019	15.713	276.17	2.3674	15.700
260.63	2.3985	15. 763	278.54	2.3639	15.723
263.02	2.3965	15. 714	280. 22	2.3625	15.673
265.42	2.3911	15. 754	282. 12	2.3604	15.703
267.81	2.3875	15. 769		Series 9	
270. 21	2.3894	15.710	285, 52	2, 3508	15.704
	Series 8		287.82	2.3503	15.682
261.92	2.3830	15.676	290. 22	2.3468	15.697
264.30	2, 3813	15.666	292.57	2.3443	15.700
266.68	2.3780	15.681	294.91	2.3415	15.709
269.06	2.3747	15.691	298.42	2.3367	15.725
271.43	2.3736	15. 681	300.75	2.3321	15.754
273.80	2.3715	15.674	303.08	2.3799	15.771

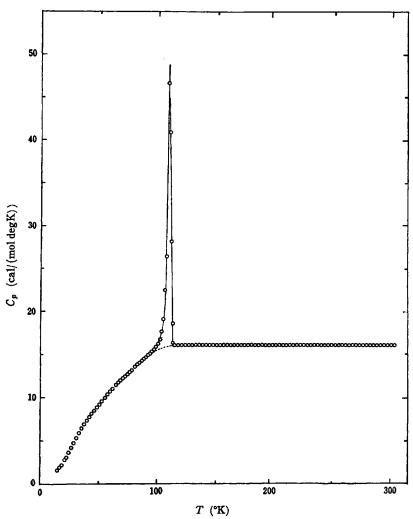


Fig. 1. Heat capacity curve of rubidium cyanide.

TABLE 3. THERMODYNAMIC PROPERTIES OF PHASE TRANSITIONS FOR RUBIDIUM AND CESIUM CYANIDES

	RbCN	CsCN
Transition temperature (degK)	110.3±0.1	193.1±0.1
Entropy change (cal/(mol degK))	1.38 ± 0.04	2.60 ± 0.05
Enthalpy change (cal/mol)	177 ± 4	461 ± 10

TABLE 4. THERMODYNAMIC PROPERTIES OF RUBIDIUM CYANIDE IN cal/(mol degK)

T (°K)	$C_{\hat{p}}$	S° (.	$H^{\circ}-H_{0}^{\circ})/\mathrm{T}$	$-(G^{\circ}-H_0^{\circ})/T$	T (°K)	$C_{\hat{p}}$	S°	$(H^{\circ}-H_{0}^{\circ})/T$	$-\left(G^{\circ}-H_{0}^{\circ}\right)/T$
10	(0.714)	(0.386)	(0. 240)	(0. 146)	110.3	Tr	ansition	temperature	
15	1.555	0.830	0. 533	`0. 297	120	16.100	19.079	10.613	8. 466
20	2.595	1.421	0.916	0.505	130	16.080	20.364	11.034	9.330
30	5.048	2.926	1.875	1.051	140	16.080	21.555	11.394	10. 161
40	7.362	4.709	2.968	1.741	150	16.080	22.665	11.707	10.958
50	9.108	6.542	4.030	2.512	160	16.080	23.702	11.980	11.722
60	10.807	8.354	5.013	3.341	170	16.080	24.677	12. 221	12.456
70	12.200	10.130	5.946	4. 184	180	16.080	25.597	12. 435	13. 162
80	13.408	11.838	6.803	5. 035	190	16.080	26.467	12.627	13.840
90	14.655	13.492	7.608	5.884	200	16.080	27.292	12.800	14. 492
100	16. 166	15.106	8.380	6.726	210	16.080	28.076	12.956	15. 120

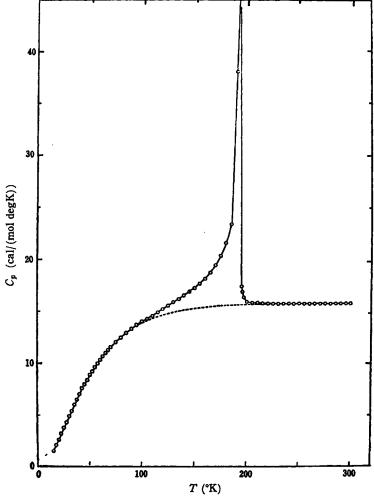


Fig. 2. Heat capacity curve of cesium cyanide.

(Table 4 continued)

T (°K)	C:	Co	(U0 U0)/T	$-(G^{\circ}-H_{0}^{\circ})/T$	T(°K)	C ₂	C°	/U° U°\/T	$-(G^{\circ}-H_{0}^{\circ})/T$
1 (K)	υp		$(H - H_0)/I$	$-(G-H_{\bar{0}})/I$	1 (K)	C _p	ა	$(H - H_0)/I$	-(G-11 ₀)/1
220	16.080	28.824	13.098	15.726	270	16.160	32.127	13.659	18.468
230	16.100	29.540	13.228	16. 312	280	16. 180	32.715	13.749	18.966
240	16. 130	30. 226	13.348	16.878	290	16.200	33.284	13.834	19.450
250	16.130	30.885	13.460	17. 425	298.15	16.200	33.673	13.949	19.724
260	16. 150	31.517	13.563	17.945					

TABLE 5. THERMODYNAMIC PROPERTIES OF CESIUM CYANIDE IN cal/(mol degK)

T (°K)	$C_{\hat{p}}$	S°	$(H^{\circ}-H_{0}^{\circ})/T$	$-(G^{\circ}-H_{0}^{\circ})/T$	T(°K)	C_p°	S°	$(H^{\circ}-H_0^{\circ})/T$	$-(G^{\circ}-H_0^{\circ})/T$
10	(0.456)	(0. 161) (0.113)	(0.048)	150	17. 231	20. 219	10. 390	9.829
15	1.425	0.509	0.373	0.136	160	18.121	21.358	10.844	10.514
20	2.554	1.074	0.772	0.302	170	19.371	22.036	11.306	10.730
30	4.812	2, 538	1.742	0.796	180	21,452	23, 650	11.805	11.845
40	6.954	4. 220	2.782	1.438	193.1	Tr	ansition	temperature	
50	8.803	5.976	3.808	2.168	200	15.940	27.117	13.925	13. 192
60	10.280	7.716	4.768	2.948	210	15.822	27.893	14.019	13.874
70	11.501	9.398	5.646	3.752	220	15.743	28.627	14.099	14.528
80	12.467	10.998	6.440	4. 558	230	15.728	29.326	14.170	15. 156
90	13.338	12.518	7.160	5.358	240	15.715	30.636	14.294	16.342
100	14.010	13.960	7.813	6. 147	260	15.713	31.253	14.348	16.905
110	14.563	15.321	8.401	6.920	270	15.712	31.846	14.399	17. 4 4 7
120	15.210	16.616	8.941	7.675	280	15.710	32.417	14.446	17.971
130	15.852	17.858	9.448	8.410	290	15.704	32.968	14.489	18.479
140	16. 496	19.056	9.928	9. 128	298.15	15.701	33. 404	14.523	18.881

Discussion

Behavior of Thermal Motion of Cyanidegroups. In order to investigate the mode of motion of the cyanide-group in these cyanide crystals, the torsional heat capacity was sorted out from the total heat capacity by following the same procedure taken in the previous papers. 1,2) By assuming the simple harmonic oscillation model for each cyanide group and also by making a flat portion in the Debyetemperature curve with suitable estimation of their oscillator frequencies, we have obtained the wave numbers of 185 cm⁻¹ and 160 cm⁻¹ for rubidium and cesium salts, respectively. Further, we have estimated the contributions of torsional motion of the cyanide-groups to the heat capacities which are given in Fig. 3. The potential barrier heights for the torsional motion at higher temperature, i.e. for the hindered rotational motion derived from these curves based on the Pitzer-Gwinn method6) are 8.0 and 7.4 kcal/mol for the low temperature phases of rubidium and cesium cyanides, respectively. Finally this motion approaches the state of the free rotation where the heat capacity amounts to 2 cal/mol degK per two degrees of freedom. The fact that the heat capacity at room temperature is about 3 cal/ mol degK in the range of relevant temperature

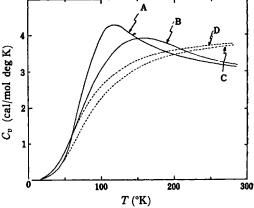
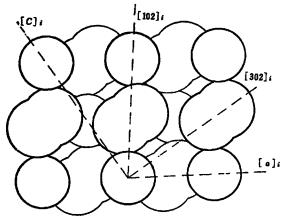


Fig. 3. Torsional heat capacity curves of cyanidegroups.

- A: rubidium cyanide.
- B: cesium cyanide.
- C: assumed harmonic oscillator with its wave number $\omega = 185 \text{ cm}^{-1}$.
- D: assumed harmonic oscillator with its wave number $\omega = 160 \text{ cm}^{-1}$.

shows that the rotation of the cyanide-group is still hindered considerably. The potential barrier heights of this hindered rotational motion are 1.7 and 1.1 kcal/mol for rubidium and cesium cyanides, respectively. It may be noted here that the potential barriers hindering the rotation of the cyanide-group estimated above are comparable with those for sodium and potassium cyanides.

⁶⁾ K.S. Pitzer and W.D. Gwinn, J. Chem. Phys., 10, 428 (1942).


Possible Existence of the Residual Ena) Rubidium Cyanide. In this compound we can observe only one peak of anomalous heat capacity at about 110°K. The value of entropy associated with amounts to be 1.38 e.u. which is corresponding to This circumstance is markedly different from those of sodium and potassium cyanides in which two anomalous heat capac-They have been interities are observed. preted in terms of the stepwise cooperative phenomena concerning the reorientational motion of the cyanide-group in the crystalline phase. The cubic symmetry of the rubidium cyanide crystal at room temperature suggests that all cyanide-groups may orientate themselves equally at random in the directions of four body-diagonals of its unit cell as in the case of the highest temperature phases of sodium and patassium cyanides. In this case, the configurational entropy with respect to the possible orientations of the cyanide-groups comes out to be R ln 8 if we can distinguish the individuality of carbon and nitrogen The amount of observed entropy atoms. change of $R \ln 2$ at the transition point leads us to expect that the configurational entropy in the low-temperature phase might be R ln- $(8/2) = \mathbf{R} \ln 4$. As one of the explanation of such a value of entropy change as $R \ln 2$, we may refer to Parry's model7) for the low temperature phase of rubidium cyanide. Based on the detailed X-ray analysis of the metastable monoclinic phase of potassium cyanide, he proposed that the crystal structure of the low temperature phase of rubidium cyanide is closely similar to the disordered structure of the metastable monoclinic phase of potassium cyanide. In this metastable phase, all cyanidegroups are at rest with their principal axis approximately parallel to the one direction of body-diagonals of the original cubic phase, the potassium ions being displaced alternately vertical to (110) plane by about 1/4 A, as is shown in Fig. 4.

If the two kinds of y-parameter of the potassium ions are assumed to be zero and the new axis is taken as,

$$a = 1/2[a]_i, c = 1/2[102]_i,$$

here, $[a]_i$ and $[102]_i$ represent the a-axis and direction of [102] of the original monoclinic cell, respectively. Then, the dimension of new unit cell becomes as follows;

a=4.45, b=4.53, c=6.36 Å, $\beta=94.6^{\circ}$. Comparing these dimensions with those of rubidium cyanide, the differences in the axial lenghts a, b and c of the two unit cells are

[G. S. Parry, Acta Cryst., 15, 601 (1962)]

Fig. 4. Proposed structure for the monoclinic low-temperature form of potassium cyanide projected on to $[010]_i$ which corresponds to [110] of the original cubic cell. The displacement $y(K^+)$ is perpendicular to the plane of this figure and has been established experimentally to be of the order of 1/4 Å. The orientation of the cyanide-group has not yet been experimentally confirmed, but is based on a self-consistent interpretation of the cell dimensions.

found to be 0.28, 0.35 and 0.31 Å, respectively. Taking into account of the difference in ionic radii between the potassium and the rubidium ions, it gets clear that this unit cell seems to correspond to the unit cell of the low temperature phase of rubidium cyanide, its dimensions being a=4.78, b=4.88, c=6.67 Å and $\beta=94.5^{\circ}$.

Therefore it may not be so unreasonable to suppose that the cyanide ions are in the disordered state with two kinds of their orientation. If the carbon and the nitrogen atoms of the cyanide-groups are distinguished in this phase, the entropy change of $R \ln 2$ may be explained on this model.

Furthermore, the behavior of the rest of configurational entropy in low temperature region below 13°K will be an interesting problem. In our present measurement of the heat capacity from 13 to 320°K, no further anomalous heat capacity in addition to the anomaly at 110°K was observed. This implies that the degree of orientational freedom of the cyanide-group in low temperature phase will freeze and this frozen-in state will persist down to the lowest temperatures. Comparing the potential barrier (8 kcal/mol) hindering the rotation of the cyanide ions with the thermal excitation energy, it seems reasonable to suppose that there may persist the residual entropy of $R \ln 4$ at the absolute zero.

⁷⁾ G.S. Parry, Acta Cryst., 15, 596, 601 (1962).

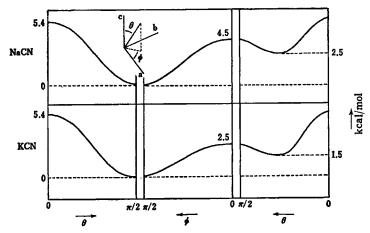
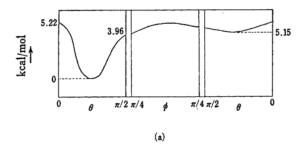


Fig. 5. The potential curves hindering the reorientation of cyanide groups of low temperature forms of potassium and sodium cyanide crystals.⁸⁾

b) Cesium Cyanide. The entropy change of the phase transition of cesium cyanide at 193°K amounts to 2.6 e.u., nearly equal to $R \ln 4$, which is equivalent to those of the upper phase transitions of sodium and potassium cyanides at 288.1 and 168.3°K, respectively.

It is also shown that behavior of temperature dependence of torsional heat capacity of cesium cyanide is quite similar to those of both sodium and potassium salt, i.e., in each case there appears hump of heat capacity near the phase transition. Thus, it is concluded that cyanide-groups are at rest along the three fold axis of the unit cell below the transition point, whereas they are in hindered rotational state above the transition point. This conclusion is consistent with the crystal structure determined by X-ray analysis.


The fact that the lower phase transitions of sodium and potassium cyanides are reasonably interpreted in terms of order-disorder phase transition with respect to the distinction of carbon and nitrogen atoms of cyanide-groups suggests that there is also the possibility of appearance of another phase transition of this kind for cesium cyanide. As a matter of fact, however, we can not find any further anomalous effect in its heat-capacity curve.

Consequently, the situation of cyanide-group in the low-teperature form of cesium cyanide crystal is such that the cyanide-groups are at rest along the three fold axis with no distinction of their heads and tails. This implies that a temperature region exists where the cyanide-groups are frozen in its fixed orientation and can no longer reorientate themselves.

The Appearance of the "Frozen-in" State and the Potential Barrier Hindering the Reorientation of Cyanide-groups. It is not definitely clear as to the reason why the cyanide-groups of rubidium and cesium. cyanides behave differently from those of sodium and potassium cyanides in spite of the fact that they have nearly equal amount of potential barriers. It must be mentioned, however, that the potential barrier-height obtained from the analysis of the calorimetric data is such an averaged one over all possible directions, and it seems possible that a symmetry difference of the unit cell of potassium and sodium salts from the others may give rise to a somewhat lower barrier-height favourable to reorientation of cyanide-groupin particular direction.

According to Nagamiya and Matsubara's calculation8) for the case of the low temperature modification of sodium and potassium cyanides, the potential curve hindering the reorientation of cyanide-group has an anisotropy, i.e., the potential barrier-height in the direction of c-axis is larger than that in the direction of a-axis. In the case of sodium cyanide this anisotropy is not so large, but in the case of potassium cyanide the anisotropy is so much larger that barrier-height along c-axis is larger by twice than that along a-axis (see Fig. 5). Moreover, it is characteristic to sodium or potassium cyanides that there exists a saddle point in the respectivepotential curves. Therefore, this saddle point provides a high transition probability concerning the reorientational motion of cyanidegroup. Following the method used by Naga-

⁸⁾ T. Matsuhara and T. Nagamiya, Scientific Papers from the Osaka University, No. 14, 17 (1949).

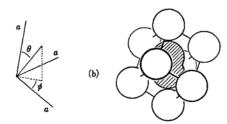


Fig. 6. (a) The potential curve hindering the reorientation of cyanide group of the low temperature form of cesium cyanide crystal.
(b) The unit cell of low temperature form of cesium cyanide crystal. This crystal structure is of a deformed CsCl-type. Hollow circles represent cesium ions, and a shaded deformed circle stands for cyanide group.

miya and Matsubara we have calculated the potential curve hindering the reorientation of cyanide-group of cesium cyanide. In this case the interaction due to a quadrupole effect will be neglected for approximate estimation of an anisotropy of the potential curve. The results obtained is given in Table 6. In the table W_{--} stands for the repulsive potential due to interaction between cyanide-groups, W_{+-} the repulsive potential for the interaction between cesium and cyanide-groups.

The potential form obtained is depicted in Fig. 6. As is seen there is no distinct anisotropy and the possibility of saddle point with appreciable low value is not expected.

TABLE 6. THE REPULSIVE LARTS OF THE HINDERING POTENTIAL FOR THE ROW-TEMPERATURE FORM OF CESIUM CYANIDE CRYSTAL (in kcal/mol)

(θ,ϕ)	W	W_{+-}	$W = W_{} + W_{+-}$
$\pi/4$ $\pi/4$	1.47	7.43	8.90
o o	5.04	8.91	13.95
$3\pi/4 \pi/4$	2.39	11.74	14. 12
$\pi/4$ 0	1.79	11.07	12.86
$3\pi/4 \ 3\pi/4$	2.82	11.56	14. 39
$0 3\pi/4$	2.46	11.59	14.05

Accordingly it may be said that the realization of orientational frozen-in state of rubidium and cesium cyanides is closely related with the nonexistence of the appreciable anisotropy or a saddle point in their potential curves.

Finally, based on the same viewpoint we should like to infer the occurrence of a metastable phase of potassium cyanide. dle point of potassium cyanide is lower than that of sodium cyanide, so that the state probability on the saddle point, which corresponds to the [111] direction of the high temperature form, is larger for potassium cyande. In that case all cyanide-groups are frozen in the [111] direction of the original cubic form, and this structure is really corresponding to the monoclinic metastable phase. The correspnding one of sodium cyanide has not been This fact is certainly connected with the difference of the height of the saddle point in these two salts.

The authors should like to express their sincere thanks to Mr. Nobukatsu Fujino of Sumitomo Metal Industries, Ltd. for the spectroscopic analysis of metal ions in the specimens. They also wish to express their sincere thanks to the Toyo Rayon Co., Ltd. who defrayed a part of the financial support for the present investigation.